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Abstract—The exploding popularity of mobile devices enables people to enjoy benefits brought by various interesting mobile apps.

However, the ever-increasing data traffic has exacerbated the congestion on current cellular networks, which results in users’

dissatisfaction, especially in crowded areas. Hence, how to alleviate data traffic in cellular networks becomes a challenging problem.

Traditional methods rely on mobile offloading techniques to deviate the data traffic originally targeted to cellular networks, such as the

small cell, Wi-Fi, and opportunistic communication. Unfortunately, mobile users still experience severe congestion when a large

number of users request for data. Facing these challenges, we introduce the concept of mobile participation to assist data offloading

by leveraging the mobility of users and the social features among a group of users. A mobile caching user, who pre-caches a certain

amount of contents, will roam around congested areas to participate in content dissemination in order to satisfy users’ requests, which

is expected to benefit both himself and users in the crowd simultaneously. To motivate such human-enabled mobile participation for

data offloading, a Stackelberg game is deployed with joint considerations on social effect and delay effect. Based on detailed

performance analysis, we demonstrate the feasibility and efficiency of the proposed approach.

Index Terms—Data offloading, mobile participation, homophily phenomenon, Stackelberg game

Ç

1 INTRODUCTION

THE soaring popularity of mobile devices enables people to
communicate with their social ties at any time and from

anywhere. People use mobile apps to create and exchange a
huge amount of data with their social interactions in cyber-
space. Reports warn that monthly global mobile data traffic
will surpass 24.3 exabytes and the mobile data traffic from
smartphones will reach three-quarters by 2019 [1]. Although
cellular network operators exploit their efforts to provide bet-
ter services in terms of higher data rate and lower costs, users
are still facing poor performance in their daily life, especially
in some crowded areas, such as football stadiums, theme
parks, and airports. However, the above crowded areas are
the places that highly need reliable wireless communication,
e.g., broadcasting evacuation information for safety purpose.
As a promising solution, mobile data offloading takes advan-
tages of small cell, Wi-Fi, and opportunistic communication
to pro-actively reduce the data traffic targeted for cellular
networks [2]. Unfortunately, although various types of mobile
offloading schemes have been proposed in both academia
and industry, we are still lacking effectivemethods. For exam-
ple, utilizing small cells is not an effective method due to
the scarcity of licensed spectrum bandwidths. Even worse,

deployingmore small cellswill incur significant costs. Regard-
ing Wi-Fi offloading, the service provider has access to much
larger free spectrum to cater the Wi-Fi deployment. However,
Wi-Fi offloading cannot provide guaranteed QoS, and Wi-Fi-
enabled devices may experience increased battery drainage
since it has to operate on two different radio interfaces [3].
To perform mobile offloading, opportunistic communication
has been identified as another approach, which increases com-
munication chances by utilizing the potential social connec-
tions among users and thus is beneficial to deliver contents. In
particular, some works [4], [5] apply social-based approaches
to help data dissemination among social ties or userswith sim-
ilar social profiles. Apparently, the opportunistic communica-
tion is not reliable for data delivery in an ad hocmode because
there is lack of incentives for source users to coordinate the
data dissemination. Clearly, mobile offloading has not been
well developed norwidely applied.

Facing these challenges and existing solutions, we take
a step further to reconsider the human-enabled approach
for mobile offloading, which takes human social behaviors
and human activities into consideration. Intuitively, users
with similar social interests often group together at certain
location [6], which potentially results in similar content
requests. For example, users gathered in specific attractions
in the Disneyland may request the similar contents related
to those attractions. When they request similar contents,
network congestion would be caused due to limited band-
width. Such congestion potentially prevents users from get-
ting their requested contents. The above phenomenon leads
us to consider how to avoid repeated requests/retrievals in
order to reduce the number of accesses to the service provider
(SP). A possible solution is to leverage users’ similar social
attributes to design a human-enabled data offloading scheme.
In sociology [7], homophily phenomenon describes that people
with more similar attributes contact more frequently than
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complete strangers. The interactions between userswithmore
contacts bring more social effect, which captures the advan-
tages of word-of-mouth communication [8]. Specifically, users
typically form their opinions about the quality of the contents based
on the information they obtain from other users. Thus, when a user
demands more contents, his social friends would also request more
contents due to the similarity of their interests. Meanwhile, users
with identical attributes could share their contents with each
other using free device-to-device (D2D) communication. As
for human activities, an observation is that users in crowded
areas either walk around or go to their interested attractions.
Hence, we can take advantage of the mobility of users to alle-
viate the congestion.

In this work, we propose a human-enabled mobile participa-
tion approach indata offloading by introducing amobile cach-
ing user (MCU), who bridges the gap between the SP and
users when the above congestion happens. Our approach is
mainly divided into two steps. In the first step, we consider
the data offloading between the MCU and the representing
users (RUs) with similar content requests in crowded areas.
Specifically, an MCU pre-caches a number of large volume
contents in advance. After receiving congestion information
(e.g., congestion area, requested contents, .etc) from the SP,
the MCU chooses a specific crowded area where requested
contents are similar with his own interests and is near to his
current location, physically moves to the RUs in the chosen
area and transfers the contents to them. In the second step, the
RUs with obtained contents further disseminate content
copies via D2D communication to other users opportunisti-
cally, who have the identical content requests with them. We
mainly consider the first step, where delay-tolerant scenario
and delay-sensitive scenario are discussed. In the delay-
tolerant scenario, RUs would like to wait until they download
the requested contents. Whereas in the delay-sensitive sce-
nario, RUs are urgent to get the requested contents. They will
be more dissatisfied with the increasing of the waiting time.
Compared to traditional data offloading approaches, the pro-
posed approach is significantly cheaper than the small cell
build-out. Moreover, by physically moving to the crowd, the
MCUmakes data transmissionmore reliable and flexible than
eitherWi-Fi or pure D2D communication.

To motivate above human-enabled mobile participation,
we design an incentive mechanism. While participating in
human-enabled data offloading, the MCU spends a few time
in moving and consumes his own resources such as battery
and storage. Hence, he would not be interested in it unless he
receives a satisfying revenue. As for RUs, they not only get
the originally requested contents, but also harvest additional
contents they may be interested in due to the similarity of
their interests with other RUs, which largely improves their
satisfactions. Since RUs request similar contents and pay for
them individually, it is reasonable to assume that RUs are self-
ish and rational. Hence, each RU only wants to maximize his
own satisfaction. To increase the MCU’s total revenue and
provide RUs’ satisfaction, we will thoroughly investigate
RUs‘ content requests, social effect, delay effect, and unit pay-
ment strategy for both the MCU and RUs in the proposed
incentivemechanism.

Our Contributions: We highlight our major contributions
as follows,

� We propose a new data offloading scheme that
takes advantages of both homophily phenomenon and
mobile participation to greatly reduce the congestion

in crowded areas where users with similar interests
are normally grouped together.

� Specifically, we consider two system models: the
delay-tolerant model and the delay-sensitive model.
In both models, by considering RUs’ interactions, we
formulate the communication between the MCU and
RUs as a two-stage Stackelberg game. In Stage I, the
MCU chooses a unit payment to maximize his total
revenue. In Stage II, each RU chooses a requested
content level given the unit payment to maximize
his satisfaction on the received contents.

� For the delay-tolerant scenario, the interactions
between RUs bring social effect. We first give an
assumption under which we show the existence and
uniqueness of the Nash equilibrium in Stage II. Then,
we present an effective algorithm to compute the
unique Stackelberg equilibrium in Stage I, at which
the revenue of the MCU is maximized, and none of
the RUs continue requesting contents by unilaterally
deviating from his current strategy

� For the delay-sensitive scenario, the interactions
between RUs not only bring social effect but also
delay effect. We extend the Stakelberg game to the
delay-sensitive model. To alleviate the serious delay
effect, we propose two improved delay-sensitive
models by further taking advantages of users’ mobil-
ity, where the first one considers the queueing delay
and the other introduces multiple MCUs.

The rest of this paper is organized as follows: In Sec-
tion 2, we briefly review the existing data offloading
approaches, economical incentives for performing data off-
loading and the social effect due to similar interests
between RUs based on their social relationship. In Section 3,
we explain our motivations of leveraging the homophily
phenomenon and the mobile participation. Following with
that, a detailed description of our proposed data offloading
system models is given in Section 4, which are formulated
as two-stage Stackelberg games respectively. In Section 5,
we study the proposed Stackelberg game in the delay-tol-
erant scenario. To better adapt to the practical situation,
we extend the Stackelberg game to the delay-sensitive
scenario in Section 6. In Section 7, the performance of our
data offloading approach is evaluated, followed by a con-
clusion in Section 8.

2 RELATED WORK

2.1 Mobile Data Offloading

Mobile data offloading [3] is a promising way to alleviate
traffic congestion and reduce the energy and bandwidth
consumption. For example, Liang et al. in [9] offload their
applications and data from mobile devices to the cloud
to improve users’ experience in terms of longer battery
lifetime, larger data storage, faster processing speed and
more powerful security services. Zhang et al. in [10] offload
mobile users’ applications to nearby mobile resource-rich
devices (i.e., cloudlets) in an intermittently connected sys-
tem to reduce energy consumption and improve perfor-
mance. In this paper, we generally discuss the mobile
offloading for cellular networks, which is classified into two
categories [11]. Infrastructure-based mobile data offloading
[12] refers to deploying small cell base stations and Wi-Fi
hotspots for mobile users [7], [13]. The connection between
mobile users and the base station is proposed to achieve
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flow level load balancing under spatially heterogeneous
traffic distributions in [14], [15]. However, the lack of cost-
effective backhaul associations for base station often impairs
their performance in terms of offloading mobile traffic. The
second category is the ad-hoc-based mobile traffic offload-
ing, which refers to applying short range communication as
the underlay to offload mobile traffic [4], [5], [16], [17], [18].

2.2 Economic Incentives for Data Offloading

The above works mainly focus on the technical perspective
adoption of data offloading without considering economic
incentives. The incentive issue is significant for the casewhere
Wi-Fi or small cell is privately owned by third-party entities,
who are expected to be reluctant to admit non-registered
users’ traffic without proper incentives [19]. The incentive
framework for the so-called user-initiated data offloading is
considered in [20], [21], where users initiate the offloading
process and offer necessary incentives in order to obtain their
contents. Gao et al. in [19] consider the network-initiated data
offloading, where cellular networks initiate the offloading
process, and hence the network operators are responsible for
incentivizingWi-Fi.

2.3 Attribute-Based Social Effect

The above works do not consider homophily phenomenon
[7]. Reingen et al. in [22] conduct a survey of the members
of a sorority in which they measure brand preference con-
gruity as a function of whether they live in the sorority
house. They find that those who live together as a group
have more congruent brand preferences than those who do
not. Presumably, living together provides more opportuni-
ties for interaction and communication. Taking a further
step, they note that information obtained from social tie con-
nections will influence in decision making in [23].

The above observations and inference are deployed in
several works. In [24], [25], [26], different privacy-preserv-
ing authentication schemes for mobile health networks are
designed from a social perspective view. Users in online
social networks apply their attributes to find matched
friends and establish social relationships with strangers in
[27]. Gong et al. in [28] study users’ behaviors by jointly con-
sidering congestion effect in the physical wireless domain
and social effect based on users’ social relationship. In [29],
[30], a social group utility maximization framework, which
captures the impact of mobile users’ diverse social ties, is
studied. Considering the social effect brought by social ties
among users, different pricing strategies of a monopolist
have been studied in [31]. In our previous work [32], the
social effect brought by users’ similar social attributes is
deployed to assist data offloading. However, the introduc-
tion of the MCU brings severe delay effect, which negatively
affects the data offloading performance. To alleviate delay
effect, we take the queue and multi-leader Stackelberg
game into consideration now, which differentiates our
paper with [28]. We focus on incentive mechanisms to moti-
vate human-enabled mobile participation for data offload-
ing under both social effect and severe delay effect.

3 MOTIVATIONS AND PRELIMINARIES

3.1 Social Enabled Data Offloading

Given a pair of strangers, one cannot push another to help
recommend/forward his contents if they do not have any

pre-established relationship. However, comparing with
complete strangers, people may intend to help the one that
shares some similarities in terms of attributes, e.g., lan-
guage, nationality, affiliation, etc. As discussed in [33], it is
a well-accepted nature of human interaction that people
like to interact with those who are similar to themselves,
which is often termed the “like me” principle. In [34], [35],
the authors conduct an experiment based on the trace file
collected during the INFOCOM 2006 [36], which analyzes
the relationship between the contact rate and the number of
identical attributes. The result shows that the contact rate in
terms of the number of contacts between two users
increases with the increment of identical attributes, which
further validates the “like-me” principle. Therefore, a poten-
tial social tie can be set up based on the attribute similarity.
Furthermore, Reingen et al. in [23] find that information
obtained from strong tie connections are more influential in
decision making than weak tie connections at a micro level
(information flows within dyads or small groups). Moti-
vated by it, content dissemination would be more efficient
given the assumption that more attribute similarities exist
between users. In addition, users who share similar interests
intend to form a group and they can forward messages to
others in the group more efficiently according to [37].
Hence, we infer that the social-enabled content dissemina-
tion would be much more efficient if users apply attribute
similarity to form the attribute-similar group.

Motivated by the above discussions, we consider
human’s similar social attributes. In the scenarios where
users group together based on their similar social attributes,
such as interests, their requested contents have a higher
probability to be similar even identical due to their influence
on each other. Hence, we could select RUs to request con-
tents and further disseminate them to other users via D2D
communication. Thus, users can obtain more interested con-
tents and their satisfactions are improved.

3.2 Mobile Participation

We conduct an experiment analyzing human mobility
traces using the real data trace file [38] in order to show the
feasibility of mobile participation. The human traces are
obtained every 30 seconds from 40 volunteers who spent
their Thanksgiving and Christmas holidays in Disney
World, Florida, US. We describe all the locations the volun-
teers have gone to as shown in Fig. 1a, in which we circle
the locations that are visited most. By comparing it with the
real Disney World map [39] in Fig. 1b, we find that those cir-
cled locations are exactly the crowded attraction areas,
where users with similar interests get together and request
similar contents. For example, at the Rock ‘n’ Roller Coaster
Starring Aerosmith attraction, many young visitors who
enjoy the trilling feelings group together and they are more
interested in exciting contents. In addition, we draw 17 vol-
unteers’ mobile traces as time changes in Fig. 2a, which veri-
fies the mobility of volunteers. Meanwhile, we illustrate
volunteers’ locations in different time-slots in Fig. 2b, where
we see that volunteers are distributed in all crowded attrac-
tion areas in each time-slot. Inferring from the observations
in Figs. 1 and 2, we conclude that: 1). volunteers move as
time changes; 2), there always exist volunteers in each
attraction in each time-slot. Therefore, leveraging mobile
participation is feasible to achieve content delivery and
dissemination.
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4 SYSTEM MODEL AND PROBLEM FORMULATION

4.1 Overview

To assist the description, we continue the example in Disney
World as shown in Fig. 3, where the yellow area is denoted
as the Rock ‘n’ Roller Coaster Starring Aerosmith attraction.
It is divided into two time-slots. In time-slot 1, no congestion
exists in the yellow area. David downloads numbers of con-
tents and continues to visit other attractions. In time-slot 2,
an increasing number of users with similar interests group
together and request for contents related to the attraction,
which results in severe congestion. As a result, users cannot
get the requested contents from the SP. The SP asks David
for help via transmitting him the short message related to the
congestion information. Since David is interested in the
same attraction and can obtain extra revenue, he moves back
to disseminate the contents after checking the distance avail-
ability between himself and the chosen attraction. He first
announces the unit payment for the requested contents. Each
RU chooses a requested content quantity tomaximize his sat-
isfaction based on the unit payment and other RU’s choices,
which is submitted to David. David maximizes the total rev-
enue and computes the corresponding unit payment which
is returned to RUs. Such communication between David and
RUs is processed iteratively until David and RUs reach an
agreement, in which David gets the maximized revenue and
RUs satisfy the content obtaining experience. Finally, RUs

disseminate their contents to other users in the crowd via
D2D communication.

4.2 System Model

Depending on RUs’ sensitiveness to the waiting time for
the requested contents, two models are considered: delay-
tolerant model and delay-sensitive model.

4.2.1 Delay-Tolerant Model

In the delay-tolerant model, RUs do not care their waiting
time. Assume a set of RUs N ¼ f1; 2; . . . ; i; . . .Ng group
together and cannot get their requested contents from the SP
directly, whereN denotes the total number of RUs. Their cor-
responding requested content level profile is represented as
x ¼ fx1; x2; . . . ; xi; . . . ; xNg

T 2 0;1½ ÞN , which quantifies the
contents they request from the MCU. Let xi 2 ½0;1Þ denote
the requested content level of the RU i and x�i denote the
requested content levels of other RUs except for the RU i.
According to [31], the RU i’s satisfaction consists of the fol-
lowing two parts: 1), internal characteristics, represented by
the maximum internal demand rate ai > 0 and the internal
demand elasticity factor bi > 0. The internal demand rate
represents themaximum satisfaction that each RU gets given
unit content level whereas the elasticity factor measures the
sensitivity of the RU’s satisfaction to changes in content lev-
els [40]. 2), external characteristics, represented by social
effect that RU j brings to RU i, quantified by gij > 0, 8j 2 N
and j 6¼ i. Since utility is a terminology in game theory and
economics to represent the satisfaction experienced by the
consumer of a good [41], the satisfaction of each RU is quanti-
fied by utility hereinafter. Given the unit payment p theMCU
charges RUs, the utility of RU i is quantified as

uiðxi; x�i; pÞ ¼ aixi �
1

2
bix

2
i þ

X

j 6¼i

gijxixj � pxi; 8i: (1)

The quadratic form in (1) not only allows for tractable
analysis but also serves a good second-order approximation
for a broad class of concave utility functions [31].

Given RUs’ requested content levels, the total revenue of
the MCU is

R x; pð Þ ¼
X

i2N

p� cð Þxi; (2)

Fig. 2. Time changes versus potential location.

Fig. 3. System model of mobile participation.

Fig. 1. Potential location of the MCU.
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where c is the unit cost the MCU spends when transmitting
contents to RUs, including energy and move consumption.

4.2.2 Intuitive Delay-Sensitive Model

Due to the difference of RUs’ requested contents, the MCU
moves to RUs and delivers contents to them one by one. As
a result, each RU has to wait for the content transmission
from the MCU when multiple RUs request contents. If they
are urgent to obtain the requested contents, their utilities
would be lowered due to long waiting time.

Assume RUs do not know the transmission order of the
MCU in advance. Each RU would consider the worst case
that he is the last one to receive the contents. To clearly
show the time delay effect, we assume the transmission
rates between the MCU and RUs are normalized and the
same. The utility of the RU i in the delay-sensitive model is

ui xi; x�i; pð Þ ¼ aixi �
1

2
bixi

2 þ
X

j2N

gijxixj

�
1

2
d
X

j2N

xj

0
@

1
A

2

� pxi; 8i;

(3)

where d is the delay effect coefficient determined by the SP.
Compared (3) with (1), the social relationship between RUs
brings not only positive social effect but also severe delay
effect in the intuitive delay-sensitive model.

The total revenue of the MCU keeps unchanged

R x; pð Þ ¼
X

i2N

p� cð Þxi: (4)

4.2.3 Queue Delay-Sensitive Model

The potential assumption in the above intuitive delay-sensi-
tive model is that the MCU begins transmission after the SP
receives content requests from all RUs. If the SP can predict
the potential congestion effect at some locations, it could
arrange the MCU to move to these locations in advance
instead of asking the MCU for help after congestion effect
appears. Because the SP keeps the historical data monitor-
ing records, the above assumption is easily satisfied. Thus,
when an RU broadcasts a content request, the MCU could
transmit the content to him on time. Simultaneously, the
content requests from other RUs continuously arrive at the
MCU. Content transmission from the MCU to RUs forms a
First In First Out (FIFO) queue model in Fig. 4. The nota-
tions are listed in Table. 1.

In the queue delay-sensitive model, we assume the levels
of newly arrival requested contents Cn in a finite interval of

length t follows the Poisson distribution with mean arrival

rate �: PfCn ¼ jjTn ¼ tg ¼ ð�tÞ
j

j! e��t. The Poisson process is a
viable model when contents originate from a large popula-
tion of independent RUs. Due to the similar interests of RUs
at the same location, most of their requested content levels
distribute in the same interval. Given unit content transmis-
sion speed, the content transmission time is modeled to
follow the Gaussian distribution with mean m� 0 and vari-
ance s2. Assume the traffic intensity r ¼ �=m < 1 for stabil-
ity. Based on Pollaczek-Khinchin (P-K) formula [42], the
expected RU waiting timeWq for each RU is

Wq ¼
r2 þ �2s2

2�ð1� rÞ
: (5)

Considering the waiting time, each RU’s utility becomes

ûi x̂i; x̂�i; p̂ð Þ ¼ aix̂i �
1

2
bix̂i

2 þ
X

j2N

gijx̂ix̂j

� k
r2 þ �2s2

2�ð1� rÞ
� p̂x̂i; 8i;

(6)

where k is the congestion coefficient. According to the histor-
ical records, the SP can predict the traffic mean arrival rate �.
One observation is that contents related to each attraction are
time-invariant. Thus, the SP could also evaluate the current
traffic intensity r. Since different RUs request contents when
congestion effect happens, the variance s2 is unknown. Point
estimation [43] is applied to estimate s2

ŝ2 ¼
1

N � 1

X

j2N

x̂j �
1

N

X

m2N

x̂m

 !2

: (7)

Substitute (7) into (6), the utility becomes

ûi x̂i; x̂�i; p̂ð Þ ¼ aix̂i �
1

2
bix̂i

2 þ
X

j2N

gijx̂ix̂j � k
r2

2�ð1� rÞ

� k
�

2ð1� rÞ

1

N � 1

X

j2N

x̂j �
1

N

X

m2N

x̂m

 !2

� p̂x̂i; 8i:

(8)

The total revenue of the MCU is the same as that in the
intuitive delay-sensitive model.

4.2.4 Multi-Leader Delay-Sensitive Model

Another observation in the intuitive delay-sensitive model
is that only a single MCU satisfies RUs’ content requests.
If multiple MCUs cooperatively transmit contents to RUs

Fig. 4.M=G=1 queue in delay-sensitive model.

TABLE 1
Notations inM=G=1 Queue

Symbols Meaning

Rn the remaining requested content levels in the queue
after the content delivery to user n

Tn the content transmission period for user n
Cn the content requests newly coming to the queue

while user nþ 1 is receving the requested contents
tn the time at which the content transmission for

user n is finished
tn þ Tn the time at which the content transmission for

user nþ 1 is finished
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simultaneously, the waiting time for each RU is reduced.
Therefore, we extend to the case where multiple MCUs
assist content transmission.

Assume there are M MCUs denoted by M¼ fm1;
m2; . . . ;mMg. Each RU is assigned to the nearest MCU.
Denote Ii;m ¼ 0; 1; i 2 N ;m 2 M as the connection indicator
between RU i and MCU m. In particular, Ii;m ¼ 1 implicits
MCU m transmits contents to RU i. Otherwise, there is no
connection between them. Meanwhile, each RU is restricted
to connect one MCU whereas each MCU serves multiple
RUs,

P
m2M Ii;m ¼ 1. All the Ii;m compose a indicator matrix

I. Given the locations of both RUs and MCUs, the indicator
matrix is known. Denote the number of RUs served by the
MCU mi; i ¼ 1; 2; . . . ;M as nmi

. To ease the description, we
put the RUs served by the same MCU together and reorder
the RU set as N ¼ fx1; . . . ; xnm1

; xnm1
þ1; . . . ; xnm1

þnm2
; . . . ;

xNgwith
P

mi2M
nmi
¼ N .

Because the introduction of multiple MCUs divides RUs
into smaller piles whereas the M=G=1 queue model adapts
to the case with a large number of RUs better. Taking the
indicator matrix I into consideration, we model the utilities
based on the intuitive delay-sensitive model instead of the
queue model. The utility of each RU is

~ui ~xi; ~x�i; ~pð Þ ¼ ai~xi �
1

2
bi~xi

2 þ
X

j2N

gij~xi~xj

�
1

2
~d
XM

m¼1

Ii;m
X

j2N

Ij;m~xj

0
@

1
A

2

�
XM

m¼1

~pm~xi; 8i;

(9)

where ~p ¼ fp11
T
nm1

; p21
T
nm2

; . . . ; pM1TnmM
gT is the unit payment

vector corresponding to each RU. Specifically, 1nmi
represents

nmi
� 1 vector with 1s, and ~pm is the unit payment at the

MCUm. Since MCUs serve different RU piles, their unit pay-
ments are different.

Accordingly, the revenue of each MCU is

~Rm ~x; ~pmð Þ ¼
X

i2N

~pm � cð ÞIi;m~xi; 8m 2 M: (10)

Because all MCUs cooperate to offload data, they aim to
achieve the maximum total revenue

~R ~x; ~pð Þ ¼
X

m2M

X

i2N

~pm � cð ÞIi;m~xi: (11)

5 UTILITY MAXIMIZATION IN DELAY-TOLERANT

MODEL

5.1 Overview

In game theory, Stackelberg game [44] is a tool to model the
scenario where a hierarchy of actions exists between two
types of players: one is the leader, and the other is the fol-
lower. The leader makes its move first. After the leader
chooses a strategy, the follower always chooses the best
response strategy that maximizes its utility. Knowing this
reaction from the follower, the leader strategically chooses a
strategy to maximize its utility. This optimal strategy of the
leader, together with the corresponding best response strat-
egy of the follower, constitutes a Stackelberg equilibrium.
At a Stackelberg equilibrium, no follower has an incentive
to adjust its strategy unilaterally.

The communication between the MCU and RUs in the
delay-tolerant scenario can be formulated as such a two-

stage Stackelberg game, named as Utility Maximization
game in delay-tolerant (UMDT).

Stage I (Unit Payment). The MCU chooses a unit payment
p� to maximize the total revenue R

p� ¼ arg max
p2 0;1½ Þ

X

i2N

xi p� cð Þ:

Stage II (Requested Content Level). Each RU i 2 N chooses
a requested content level xi to maximize the utility
ui xi; x�i; pð Þ given the unit payment p and the requested
content levels of others x�i

x�i ¼ arg max
xi2 0;1½ Þ

ui xi; x�i; pð Þ; 8i:

In the UMDT game, the MCU is the leader with the unit
payment p� as the strategy and RUs are the followers. The
strategy of RU i is the requested content level x�i , 8i. Due to
each RU is selfish, the game in Stage II is considered as a
non-cooperative game, which we call Request Level Deter-
mination (RLD) game. Given the UMDT formulation, we
are interested in the following questions:

� Q1: For a given unit payment p, is there a profile of
stable strategies in the RLD game such that no RU
can increase the utility by unilaterally changing his
current strategy?

� Q2: If the answer to Q1 is affirmative, is the stable
strategy profile unique? When it is unique, RUs will
be guaranteed to select the strategies in the same sta-
ble strategy profile.

� Q3: How can the MCU select the value of p to maxi-
mize the total revenue?

The stable strategy profile in Q1 corresponds to the concept
of Nash equilibrium [44].

Definition 1. Nash equilibrium: A profile of strategies x� is a
Nash equilibrium of the RLD game if for any mobile RU i

uiðx
�
i ; x
�
�i; pÞ � uiðxi; x

�
�i; pÞ; (12)

for any xi � 0, where ui is defined in (1).

The existence (Q1) and uniqueness (Q2) of a stable Nash
equilibrium strategy profile not only ensure that no RU has
an incentive to make a change unilaterally but also allow
the MCU to predict the behaviors of RUs and thus to select
the optimal unit payment. The answer to Q3 depends
heavily on those to Q1 and Q2. Stackelberg equilibrium,
which is the final solution to the UMDT game, consists of
the optimal solution computed in Q3 and the corresponding
strategies at the Nash equilibrium in the RLD game.

5.2 RU Utility Maximization

Backward reduction methods [44] are deployed to maxi-
mize the utilities of both RUs and MCUs. We answer above
Q1 and Q2 first, followed by an algorithm to find the RUs’
best response strategies in the RLD game.

Definition 2. Best Response Strategy: Given p and x�i, a strategy
is RU i’s best response strategy, denoted by biðx�iÞ, if it maxi-
mizes the utility function uiðxi; x�i; pÞ in (1), over all xi � 0.

Based on the definition of Nash equilibrium, every RU
plays his best response strategy at a Nash equilibrium. By

setting the derivative @ui xi ;x�i;pið Þ
@xi

¼ 0 as the first order condi-

tion in (1), we obtain the RU i’s best response strategy
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bi x�ið Þ ¼ max 0;
ai � p

bi
þ
X

j6¼i

gij
bi

xj

( )
; 8i; (13)

in which the max operation is to ensure RU i’s strategy non-
negative. Each RU’s best response strategy consists of two
parts: internal demand ðai � pÞ=bi which is independent of
other RUs, and external demand

P
j6¼i

gij
bi
xj indicating the

social effect other RUs bring to the RU i. The coefficient
gij=bi represents the marginal increase of RU i’s requested
content level when RU j’s requested content level increases.
It implies that the increase of other RUs’ strategies has a
positive impact on the RU i’s strategy.

5.2.1 Existence and Uniqueness of RUs’ Best

Response Strategies—the Answers to Q1 and Q2

Since each RU has a great incentive to unboundedly increase
the requested content levels provided other RUs’ request lev-
els are sufficiently large, the Nash equilibrium cannot be
ensured to exist. To circumvent such situation, we give a
general assumption underwhich aNash equilibrium exists.

Assumption 1.
P

j 6¼i
gij
bi

< 1; 8i:

The Assumption 1 is a sufficient condition for the exis-
tence of RUs‘ best response strategies. Assume that the max-
imum requested content level among all the other RUs is x0j.
Under the Assumption 1, the external demand is

P
j6¼i

gij
bi
xj �P

j6¼i
gij
bi
x0j < x0j. It implies that the social effect experienced

by an RU from others is limited to the largest effect this RU
can experience from an individual of the other RUs.

Theorem 1. Under Assumption 1, the RLD game in Stage II
always admits a Nash equilibrium for RUs.

We prove the Theorem 1 in Appendix. The main idea is
to show our RLD game with unbounded content levels
is equivalent to a game with bounded content levels that
admits a Nash equilibrium.

Theorem 2. Under Assumption 1, the RLD game in Stage II
has a unique best response strategy.

We prove the Theorem 2 in Appendix. According to [45],
we try to demonstrate that the RLD game is a concave game.

5.2.2 Calculation of RUs’ Best Response Strategies

We propose an algorithm to calculate RUs’ best response
strategies as shown in Algorithm 1.

Algorithm 1. Calculate the RUs’ Best Response Strategies

Input: precision threshold �
Output: x�

1 x
ð0Þ
i  0; 8i 2 N ; n 1;

2 for j ¼ 1; j � N do

3 x
ðnÞ
i ¼ max 0; ai�pbi

þ
P

j 6¼i
gij
bi
x
ðn�1Þ
j

n o
;

4 end
5 if jjxðnÞ � xðn�1Þjj < � then
6 x� ¼ xðnÞ;
7 break;
8 else
9 n ¼ nþ 1;
10 go back to 2;
11 end
12 return x�;

Theorem 3. Algorithm 1 calculates the Nash equilibrium in the
RLD game.

We prove the Theorem 3 in Appendix. The key is to prove
that the best response strategy for each user is converged.

To ease the description, we express the best response
strategies in a matrix format.

Lemma. Denote S as the set of RUs with positive strategies and
N� S as the set of other RUs: S ¼ fijx�i > 0g and N� S ¼
fijx�i ¼ 0g, the best response strategies are

x�S ¼ LS �GSð Þ�1 aS � p1Sð Þ (14)

x�N�S ¼ 0N�S (15)

where x�S ¼ fx
�
i ji 2 Sg, x�N�S ¼ fx

�
i ji 2 N� Sg and aS ¼

faiji 2 Sg. The matrices LS;GS are jSj � jSj matrices with
elements in L;G with indices in S � S, respectively. The vec-
tors 1S and 0N�S are jSj � 1 and jN � Sj � 1 vectors with 1s
and 0s, respectively.

We prove the Lemma in Appendix. The important part is
to show that LS �GSð Þ�1 is invertible.

5.2.3 Discussion on Social Effect

Proposition 1. For the RLD game, when ai ¼ a > p and the
social effect is symmetric, gij ¼ gji; 8i 6¼ j, the social relation-
ship between RUs brings a positive effect to Nash equilibrium.

We prove the Proposition 1 in Appendix. The main idea
is to show that the total requested content level at the Nash
equilibrium increases when gij increases. In addition, the
performance under asymmetric social effect is shown to be
similar with that under symmetric social effect in Section 7.

5.3 The MCU Revenue Maximization

According to the above analysis, the MCU, as a leader,
knows there exists the unique Nash equilibrium for the RUs
given any unit payment. Hence, he can maximize the total
revenue by choosing the optimal unit payment.

5.3.1 The Impact of Unit Payment

We first take the case with two RUs as an example. Without
loss of generality, assume a1 > a2. Intuitively, in (13), both
RU 1 and RU 2 have positive strategies when the unit pay-
ment p is in a low price regime. Their strategies are

x1 ¼
a1�p
b1
þ g12

b1
x2 ð16aÞ

x2 ¼
a2�p
b2
þ g21

b2
x1; ð16bÞ

(

By solving above equations, we get the value of x1 and x2

x1 ¼
ða1 � pÞb2 þ ða2 � pÞg12

b1b2 � g12g21
(17)

x2 ¼
ða2 � pÞb1 þ ða1 � pÞg21

b1b2 � g12g21
; (18)

which show that the strategies of both RU 1 andRU2decrease
as p increases. Based on the Assumption 1, x1 > x2. Thus,
when increasing p, the strategy of RU 2, x2, first decreases to
0. Denote the unit payment as pth at which RU 2’s best
response strategy is decreased to 0. According to (18),
pth ¼

a2b1þa1g21
b1þg21

. Continuing to increase p, the strategy of RU 1

then decreases to 0. Therefore,we have the Proposition 2.
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Algorithm 2. Calculate the MCU’s Optimal Revenue

Input: none
Output: p�, x�; r�

1 calculate the Nash equilibrium x�
0
using Algorithm 1 when

the unit payment is 0;
2 p 0; p�  0; r�  0; S  ;;
3 for i ¼ 1; i � N do
4 if x�

0

i > 0 then
5 S  S

S
fig;

6 end
7 end
8 while p � maxi2N ai and S 6¼ ; do
9 S1  ;; S2  ;;
10 foreach i 2 S do

11 if ðLS �GSÞ
�1

h i
i
1S > 0 then

12 S1  S1
S

if g;

13 p̂i  
ðLS�GSÞ

�1½ 	iaS
ðLS�GSÞ

�1½ 	i1S
;

14 end
15 end
16 foreach i 2 N� S do
17 if G½ 	i;S LS �GSð Þ�11S < �1 then
18 S2  S2

S
if g;

19 p̂i  
G½ 	i;S LS�GSð Þ�1aSþai

G½ 	i;S LS�GSð Þ�11Sþ1
;

20 end
21 end
22 p ¼ mini2S1[S2 p̂i;
23 k ¼ argi2S1[S2 p;

24 p0 ¼
1T
S

LS�GSð Þ�1aSþc1
T
S

LS�GSð Þ�11S

21T
S

LS�GSð Þ�11S
;

25 if p0 2 p; p
h i

then

26 ep ¼ p0;
27 else if p0 < p then
28 ep ¼ p;
29 else
30 ep ¼ p;
31 end
32 er ¼ ðep� cÞ1TS LS �GSð Þ�1 aS � ep1Sð Þ;
33 if er > r� then
34 p�  ep;r�  er; x�S ¼ LS �GSð Þ�1 aS � p�1Sð Þ;

x�N�S ¼ 0N�S , x
� ¼ x�S

S
x�N�S;

35 end
36 p ep;
37 if k 2 S then
38 S ¼ Snfkg;
39 else
40 S ¼ S [ fkg;
41 end
42 end
43 return p�; x�; r�

Proposition 2. In RLD game, the impact that p brings to the
two RUs’ best response strategies x�1 and x

�
2 is as follows

� When we set p in a low regime: 0 � p < pth, the
best response strategies of two RUs are listed in (17)
and (18);

� When we set p in a medium regime: pth � p < a1,
x1 ¼

a1�p
b1

and x2 ¼ 0;

� When we set p in a high regime; p � a1, RUs will not
pick up their strategies: x1 ¼ x2 ¼ 0.

Based on the Assumption 1, pth ¼
a2b1þa1g21

b1þg21
> a2. It implies

that RU 2 would like to take part in the game (x2 2 0)
although the unit payment he has to pay is larger than the
internal effect. This gives the credits to the social effect that
RU 1 brings to, which verifies that social effect brings benefits
in our scheme.

Next, we extend our discussion on the impact of p to a
general case where more RUs request contents.

Proposition 3. In RLD game, the impact that p brings to the
RUs’ best response strategies x� is as follows

� When we set p in a low regime 0 � p � maxi2Mai:
there is a set of prices p0 , 0 < p1 < p2 < 
 
 
 < pM
< pMþ1 , maxi2N ai. For each k 2 f0; 1; 2; . . . ;Mg,
there is a set Sk � N such that for any p 2 ½pk; pkþ1	

such that x�i ¼ ½ðLSk �GSkÞ
�1ðaSk � p1SkÞ	i; 8i 2 Sk

and x�i ¼ 0; 8i =2 Sk

� When we set p in a high regime p � maxi2N ai,
x�i ¼ 0; 8i

We prove the Proposition 3 in Appendix. It shows
that each RU’ best response strategy is a piecewise linear
function of the price, which motivates us to propose the
Algorithm 2 to calculate the MCU’s optimal revenue.

5.3.2 Calculation of the MCU’s Optimal Revenue—The

Answer to Q3

Based on the Lemma, the piecewise unit payment p is linear
with the total best response strategies 1Tx� at the Nash equi-
librium. Hence, the total revenue of the MCU ðp� cÞ1Tx� is
a quadratic function with the unit payment p according to
(2). Given above characteristics, we propose the Algorithm 2.
Inspired by Proposition 3, we first determine the unit pay-
ment interval in which the set of RUs with positive strate-
gies does not change when the unit payment increases or
decreases. Within each determined unit payment interval,
we calculate the optimal unit payment to maximize the total
revenue of the MCU. Finally, by comparing total revenues
in each interval, we obtain the final unit payment, which
makes largest total revenue for the MCU. The final unit
payment, together with the corresponding RUs’ requested
content levels, composes the Stackelberg equilibrium.

Specifically, the Algorithm 2 is initialized by calculating
the RUs’ best response strategies when the unit payment
p ¼ 0, as shown in Step 1. From Step 3 to Step 7, it finds
the set S composed of RUs with positive strategies, which
serves the initial conditions in the following steps. As the
unit payment p increases from 0 to maxi2N ai, it iteratively
finds the critical unit payment at which the set S changes as
illustrated from Step 10 to Step 22. Because the change of
the set means either adding or dropping an eligible RU, the
process of finding the critical unit payment can be divided
into the following three parts:

� Step 10 to Step 15 investigates the critical unit
payment in the set S, which makes at least one RU’s
positive strategy decreases to 0. Since RU i is in the
set S, according to (14), his positive strategy xi is

xi ¼ ðLS �GSÞ
�1

h i
i;S

aS � p1Sð Þ > 0; (19)
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where ½ðLS �GSÞ
�1	i;S denotes a 1� jSj vector with

elements in the ith row of the matrix ðLS �GSÞ
�1

and the columns with indices in S. If ½ðLS �
GSÞ

�1	i;S1S > 0, the RU i’s positive strategy decreases
as p increases. Assuming when the unit payment
increases to p̂i, the RU i’s positive strategy xi decreases
to 0.We have

ðLS �GSÞ
�1

h i
i;S
aS ¼ p̂i ðLS �GSÞ

�1
h i

i;S
1S

p̂i ¼
ðLS �GSÞ

�1
h i

i;S
aS

ðLS �GSÞ
�1

h i
i;S
1S

: (20)

� Step 16 to 21 investigates the critical unit payment
in the set N� S, which makes at least one RU’s
strategy become positive When RU i is in the set
N� S, xi ¼ 0 > ai�p

bi
þ
P

j6¼i
gij
bi
xj. If xj > 0, xj ¼

½ðLS �GSÞ
�1	j;S aS � p1Sð Þ. Denote Gi;S as a 1� jSj

vector composed of the element of the ith row of
the matrix G with column indices in S

xi ¼ 0 >
ai � p

bi
þ

1

bi
G½ 	i;S LS �GSð Þ�1 aS � p1Sð Þ

¼
1

bi
G½ 	i;S LS �GSð Þ�1aS þ

ai
bi

�
p

bi
G½ 	i;S LS �GSð Þ�11S þ 1

� �
;

If G½ 	i;S LS �GSð Þ�11S < �1, ai�p
bi
þ 1

bi
G½ 	i;S LS �GSð Þ�1

aS � p1Sð Þ increases as p decreases. It becomes posi-
tive when the unit payment decreases to

p̂i ¼
G½ 	i;S LS �GSð Þ�1aS þ ai

G½ 	i;S LS �GSð Þ�11S þ 1
: (21)

� By comparing both the critical unit payments in set S
and N� S, we choose the minimized one as the final
critical unit payment as illustrated in Step 22.

From Step 24 to Step 31, we calculate the unit payment
ep 2 ½p; p	 such that the MCU’s revenue R x; pð Þ is maximized,

in which R x; pð Þ ¼ R xS; pð Þ ¼
P

i2S xi p� cð Þ ¼ ðp� cÞ1TS
LS �GSð Þ�1 aS � p1Sð Þ; p 2 ½p; p	. By setting the first order
derivative of R x; pð Þ to 0, we find the potential optimal unit
payment p0 in the interval ½p; p	

p0 ¼
1TS LS �GSð Þ�1aS þ c1TS LS �GSð Þ�11S

21TS LS �GSð Þ�11S
; (22)

if p0 2 ½p; p	, the optimal unit revenue ep ¼ p0. Otherwise,
the optimal unit payment is ep ¼ p if p0 <¼ p, or ep ¼ p
if p0 <¼ p. The local optimal revenue r0 is

r0 ¼ ðep� cÞ1TS LS �GSð Þ�1 aS � ep1Sð Þ; ep 2 p; p
h i

: (23)

Meanwhile, the set S is updated as shown from Step 37 to
Step 41 by adding or deleting the RU k found in Step 23.
The renewed set S is deployed to continue finding another
local optimal unit payment.

Finally, by comparing the local optimal revenues in each
unit payment interval, we find the global optimal revenue
r� and its corresponding unit payment p� as illustrated in
Step 32 to Step 35. The related RUs’ best response strategies
x� are calculated.

6 UTILITY MAXIMIZATION IN DELAY-SENSITIVE

MODEL

In this section, we model the delay-sensitive cases as three
two-stage Stackelberg games to maximize the utilities of
RUs and MCUs, respectively. Specifically, the delay effect
considered in the intuitive delay-sensitive model is essen-
tially a specific form of the congestion effect studied in [28].
Therefore, we mainly discuss the other two delay-sensitive
models.

6.1 Intuitive Delay-Sensitive Model

Refering to [29], the RU i’s best response strategy is

bi x�ið Þ ¼ max 0;
ai � p

bi þ d
þ
X

j 6¼i

gij � d

bi þ d
xj

( )
; 8i: (24)

By comparing (13) and (24), each RU suffers both positive
social effect and negative delay effect brought by other RUs.
When gij < d, the RU j even brings negative external effect
to the RU i. Otherwise, the RU j puts positive external

effect. Under the assumption
P

j 6¼i
jgij�dj

ðbiþdÞ
< 1; 8i, the utility

maximization is obtained according to Algorithm 3 in [29].

6.2 Queueing Delay-Sensitive Model

By setting the derivative @ûi x̂i;x̂�i;p̂ð Þ
@x̂i

¼ 0 in (8), the RU i’s best

response strategy is obtained as

bi x̂�ið Þ ¼ max 0;
ai � p̂

bi þ d̂
þ

X

j6¼i;j2N

gij � d̂
N�1

bi þ d̂
xj

8
<
:

9
=
;; (25)

where d̂ ¼ k�
Nð1�rÞ is assumed as a system parameter esti-

mated by the SP. Comparing (24) and (25), given d̂ ¼ d, the
delay effect in the queueing delay-sensitivemodel is relieved
from d to d

N�1, which theoretically proves that our queue
model lowers the delay effect. Meanwhile, the content mean
arrival rate � brings a negative effect to RUs’ utilities. It is
because larger � increases the queue length given the fixed
average content transmission time and thus puts RUs to the
longer waiting time. Similarly, the traffic intensity r puts a
negative delay effect to RUs’ utilities.

Since each RU’s utility in (25) is similar to that in (13) and
the MCU’s utility keeps unchanged, we could simply apply
the Algorithm 2 to obtaining the best strategies for both RUs
and MCU under the following assumption:

Assumption 2.
P

j6¼i
jgij�

d̂
N�1j

ðbiþd̂Þ
< 1; 8i.

6.3 Multi-Leader Delay-Sensitive Model

Due to the participation of multiple MCUs, the previous sin-
gle-leader Stackelberg game is extended to a multi-leader
two-stage Stackelberg game as follows:

Stage I (Unit Payment). Each MCU announces its unit
payment ~pm to maximize their total revenues

~p� ¼ arg max
~p2 0;1½ ÞM

~R ~x; ~pð Þ:

Stage II (Requested Content Level). Each RU i 2 N strategies
the required content level ~xi tomaximize his own utility given
the price ~p and the requested content levels of others ~x�i

~x�i ¼ arg max
~xi2 0;1½ Þ

~ui ~xi; ~x�i; ~pð Þ; 8i:
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6.3.1 Utility Maximization for RUs

Similar with (13), the best response strategy for RU i is

bi ~x�i; ~pð Þ ¼

max 0;
ai �

PM
m¼1 Ii;m~pm

bi þ ~d
þ

X

j 6¼i;j2N

gij � ~d
PM

m¼1 Ii;mIj;m

bi þ ~d
xj

8
<
:

9
=
;:

(26)

Formula (26) shows that the introduction of multiple MCUs
reduces each RU’s delay effect by serving them locally
whereas does not affect their global positive social effect.
With known indicator matrix, (26) is similar with (3). There-
fore, if we have the following assumption, the existence and
uniqueness can be proved referring to the previous proof.

Assumption 3.
P

j 6¼i

jgij�~d
PM

m¼1
Ii;mIj;m j

ðbiþ~dÞ
< 1; 8i

Meanwhile, under the Assumption 3, the best response
strategies for all RUs given the unit payment vector are

~x�S ¼
~LS � ~GS

� ��1
aS � ~pS
� �

(27)

~x�N�S ¼ 0N�S : (28)

The corresponding matrices ~L ¼ diagðb1 þ ~d; b2 þ ~d; . . . ; bN þ ~dÞ

and ~G ¼ G�D, where

D ¼ ~d

0
P

m2M I1;mI2;m 
 
 

P

m2M I1;mIN;mP
m2M I2;mI1;m 0 
 
 


P
m2M I2;mIN;m

..

. ..
. . .

. ..
.

P
m2M IN;mI1;m

P
m2M IN;mI2;m 
 
 
 0

2
66664

3
77775

The implication for S has been explained previously.

6.3.2 Utility Maximization for MCUs

Due to the globally positive social effect and locally negative
delay effect, we cannot simply deploy the Algorithm 2 to
solve the Stackelberg game for each pile of RUs. However,
owing to the existence and uniqueness of all RUs’ best
response strategies ~x�, MCUs can correctly predict the
behaviors of all RUs given the unit price ~p, which gives
them opportunities to maximize their total revenues.

To ease the description, we consider the case where all
RUs receive their requested data ~x�S ¼ ~x�. The case in which
some RUs receive no contents can be easily extended. With
the known indicator matrix, (11) is rewritten as

~R ~x; ~pð Þ ¼ ð~p� c1NÞ
T~x�: (29)

Substitute (27) into (29), we have

~R ~x; ~pð Þ ¼ ð~p� c1NÞ
T ~L� ~G
� ��1

a� ~pð Þ

¼ �~pT ~L� ~G
� ��1

~pþ ~pT ~L� ~G
� ��1

a

þ c1TN
~L� ~G
� ��1

~p� c1TN
~L� ~G
� ��1

a:

(30)

We ignore the last term in (30) since it has nothing to do
with ~p in the following. To obtain the strategies for each
MCU, we have the total utilities maximization problem as

max
~p1;...;~pM

~R ~x; ~pð Þ0¼ �~pTA~pþ ~pTAaþ c1TNA~p

s:t: 0 � ~pm � max
i2N

ai; 8m;
(31)

where A ¼ ~L� ~G
� ��1

. The constraints in (31) is to restrict
each MCU’s unit payment. Otherwise, RUs would not
receive any contents from MCUs as shown in (27) and (28).
Since ~p is piecewise, we divide the matrix A into blocks

A ¼

A11 A12 
 
 
 A1M

A21 A22 
 
 
 A2M

..

. ..
. . .

. ..
.

AM1 AM2 
 
 
 AMM

2
6664

3
7775

where

Auv ¼

aPi�1

u¼1
nmuþ1;

Pj�1

v¼1
nmvþ1


 
 
 aPi�1

u¼1
nmuþ1;

Pj

v¼1
nmv

..

. . .
. ..

.

aPi

u¼1
nmu ;
Pj�1

v¼1
nmvþ1


 
 
 aPi

u¼1
nmu ;
Pj

v¼1
nmv

2
66664

3
77775

a ¼ fa1; . . . ; anm1
; anm1

þ1; . . . ; anm1
þnm2

; . . . ; aNg
T ¼ fa0T1 ; a0T2 ; . . . ;

a0TMg
T is rewritten, where a0i ¼ fa

P
nmi�1þ1

; . . . ; aPnmi
gT .

Substituting (32) into (31),

~R ~x; ~pð Þ0 ¼
XM

i¼1

XM

j¼1

~pi ~pj1
T
nmi

Aij1nmj

þ
XM

i¼1

~pi
XM

j¼1

ð1Tnmi
Aij1nmj

ÞT þ 1Tnmi
Aija

0
j

� �

¼ ~p0TA0~p0 þ
XM

i¼1

~pi
XM

j¼1

ð1Tnmi
Aij1nmj

ÞT þ 1Tnmi
Aija

0
j

� �

where ~p0 ¼ ½~p1; ~p2; . . . ; ~pM 	 and A0 is a new matrix with the

ijth element 1Tnmi
Aij1nmj

. According to [46] and [47], the

total utilities maximization is a convex optimization prob-
lem as long as A0 þA0T is positive semidefinite. Therefore,
we can use convex toolbox cvx [48] to obtain the strategies
of MCUs under the positive semidefinite assumption.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the data off-
loading approaches in both the delay-tolerant scenario and
the delay-sensitive scenario.

7.1 Simulation Settings

We consider a scenario with N ¼ 10 RUs served by MCUs.
Their internal characteristics follow a Gaussian distribution,
where ai � N ma; 2ð Þ and bi � N mb; 2ð Þ; 8i. To show the
social effect brought by RUs’ social relationship, we deploy
the Erdo��s-Re�nyi (ER) graph [49] model, in which a social
edge between RUs exists with probability PS in a group. If a
social edge indeed exists, it is assumed to follow a normal
distribution N mg; 2

� �
. To ensure the assumptions proposed

in the paper, we set ma ¼ mb ¼ 30. In addition, the MCU’s
unit cost when delivering contents to RUs is constant, c ¼ 5.

7.2 Simulation Results

In our simulations, we mainly compare the performance of
the following cases: (1) No relationship case (NSR), in which
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there are no interactions between RUs, gij ¼ 0; i; j 2 N ,
d ¼ d̂ ¼ ~d ¼ 0. (2) Delay-tolerant case (UMDT), in which
the social effect exists among RUs due to their similar social
attributes gij 6¼ 0; 9i; j 2 N , d ¼ d̂ ¼ ~d ¼ 0. (3) Intuitive
Delay-sensitive case (iUMDS). (4) Queue Delay-sensitive
case (qUMDS), and (5) Multi-leader Delay-sensitive case
(mUMDS). Note that we normalize most simulation perfor-
mance based on the NSR case, which means the perfor-
mance value is divided by the corresponding value in the
NSR case. In what follows, we show the impacts to which
the social effect and delay effect will bring respectively.

7.2.1 The Impact of the Probability of Social Edge

To investigate the impact of social effect, we first consider
the UMDT case in Fig. 5. Since two RUs in a social relation-
ship could have different interests, we want to find whether
such an asymmetry impacts RUs’ utilities. Fig. 5a shows
that it does not play an important role on RUs. Therefore,
we choose the asymmetric social relationship in the follow-
ings as gij 6¼ gji to be close to reality. Fig. 5a also tells us that
the probability of the social relationship between RUs has a
large impact. This is because the probability implies the con-
tact opportunities between RUs, which would bring more
social effects. Fig. 5b further demonstrates the above obser-
vation, which shows that the total utility of RUs increases as
the increasing of the probability of social relationship.
Hence, our motivation is verified that the homophily phe-
nomenon truly brings positive social effects to data offload-
ing scheme.

7.2.2 The Impact of Delay Effect

In iUMDS case, we consider the intuitive delay effect. From
Fig. 6a, we find that such delay effect puts a serious negative
impact on the MCU’s total revenue. Specifically, when the
delay effect is large, it could even cancel out the benefits
brought by the social effect. When RUs are eager to obtain
their requested contents, they have to wait for a long time.
Thus, they would not request more contents even if the unit
payment is low. The low unit payment and few contents
decrease the total revenue of the MCU.

7.2.3 The Benefits Brought by Improved Models

In order to show the benefits in the qUMDS and mUMDS
cases, we compare the MCU’s total revenue as shown in
Fig. 9. The worst situation is considered that the intuitive
delay effect cancels the benefits brought by social effect
completely, where mg ¼ d ¼ 3. Fig. 9 demonstrates that the
introduction of the queue and multiple MCUs indeed helps
increase the total revenue.

qUMDS Case. We discuss the impact of the mean arrival
rate shown in Fig. 6b. It impacts RUs’ content levels nega-
tively. Higher mean arrival rate indicates that more content
requests come to the MCU while it is delivering contents,
which would increase the content queue length. RUs have
to wait for a longer time to obtain their contents and thus
dissatisfy with the content transmission. Therefore, their
requested content levels would decrease.

mUMDS Case. In Fig. 7, we draw the impacts to both
MCUs and RUs’ utilities brought by the number of MCUs.
Assume there areN ¼ 25 RUs requesting contents. As can be
seen from Figs. 7a and 7b, more MCUs not only increase the
utilities of RUs but also improve the total revenue of them-
selves. Fig. 8 shows an interesting phenomenon. Given the
number ofMCUs, each RU’s waiting time will increase as the
number of RUs becomes large, and thus their own utilities
reduce. In the worst case, the total utilities of a larger number
of RUs are lower than those of a smaller number of RUs as
shown in Fig. 8b. However, since the number of RUs is large,
the total avenue obtained from them can still be as high as
shown in Fig. 8a. Both Figs. 7 and 8 demonstrate the effective-
ness of our proposedmultipleMCUdelay sensitivemodel.

Fig. 5. UMDT case.

Fig. 6. Delay effect.

Fig. 9. Total levels versus number of RUs.

Fig. 7. Effect from MCUs.

Fig. 8. Effect from RUs.
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8 CONCLUSION

In this paper, we propose a data offloading approach by
leveraging human’s social behavior and human activities. To
motivate the participation of MCUs, a two-stage Stackelberg
game is deployed considering the interactions between RUs.
In the delay-tolerant scenario, the interactions bring social
effect owing to RUs’ similar social attributes. We prove that
the Stackelberg game has a unique Nash equilibrium and
design an effective algorithm to compute the RUs’ best
response strategies. This enables the MCU to maximize the
revenue. In the delay-sensitive scenario, by further taking
advantages of RUs’ mobility, we propose two improved
approaches to lower RUs’ delay effect due to their long wait-
ing time, which introduces queue and extends the single-
leader Stackelberg game to the multi-leader scheme, respec-
tively. Based on the simulation results, we have shown the
feasibility and effectiveness of our proposed approaches.

APPENDIX

Proof of Theorem 1 In the RLD game G ¼ N ; uif gi2N ;
�

½0;1	Ng, we denote x� as a strategy profile and x�i as the

largest requested content level in it, i.e., x�i > x�j ; 8j 6¼ i.
Based on (13), when x�i > 0

x�i ¼
ai � p

bi
þ
X

j 6¼i

gij
bi

x�j �
ai � pj j

bi
þ
X

j6¼i

gij
bi

x�i ;

from which we get x�i � ai � pj j=ðbi �
P

j6¼i gijÞ � ~x. ~x

is any number that satisfies ~x � maxi2N ai � pj j=

ðbi �
P

j6¼i gijÞ. Since x�i is the largest content level, all the

content levels in game G are bounded, i.e., x�j 2 ½0; ~x	;

j 2 N . Therefore, our game G is equivalent to a new

game ~G ¼ fN ; uif gi2N ; ½0; ~x	
Ng that has the same Nash

equilbium stategy profile.

Taking the game ~G into consideration, the strategy
space ½0; ~x	N is compact and convex. The utility function
ui xi; x�i; pð Þ is continuous in xi and x�i. The second-order

derivative of RU i’s utility function @
2ui xi;x�i;pð Þ

@2xi
¼ �bi is

negative. Therefore, it is a concave game and admits a
Nash equilibrium [45], [50]. Hence, the Nash equilibrium
for our RLD game G exists. tu

Proof of Theorem 2. The Jacobian matrix ruðxÞ of RUs’
utility profile uðxÞ ¼

D
u1ðxÞ; u2ðxÞ; . . . ; uNðxÞf g is given by

ru xð Þ ¼ �ðL�GÞ, where L ¼ diagðb1; b2; . . . ; bNÞ and

G ¼

0 g12 
 
 
 g1N
g21 0 
 
 
 g2N

..

. ..
. . .

. ..
.

gN1 gN2 
 
 
 0

2
6664

3
7775: (32)

Based on Assumption 1, we have

L�G½ 	ii >
X

j6¼i

L�G½ 	ij

���
���; 8i;

where L�G½ 	ij denotes the element in the ith row and
jth column in the matrix L�G½ 	. Hence, L�G½ 	 is
strictly diagonal dominant. Assume social effect between
RUs is symmetric, gij ¼ gji; 8i; j 2 N , L�G½ 	T is also

strictly diagonal dominant. Therefore, ru xð Þ þ ruT xð Þ ¼
� L�G½ 	 � L�G½ 	T is strictly diagonal dominant and
symmetric. According to [46], a symmetric matrix that is
strictly diagonally dominant with real nonnegative diag-
onal elements is positive definite. Thus, � L�G½ 	 �
L�G½ 	T is negative definite since the elements in it are
negative. ruðxÞ is diagonally strictly concave [45]. The
RLD game G has a unique Nash equilibrium. tu

Proof of Theorem 3. Let DxðnÞi , x
ðnÞ
i � x�i ; 8i. According

to step 3 in Algorithm 1

jDx
ðnÞ
i j �

X

j 6¼i

gij
bi

Dx
ðn�1Þ
j

�����

����� �
X

j6¼i

gij
bi

Dx
ðn�1Þ
j

���
���; 8i; (33)

Denote jjDx
ðnÞ
i jj1 as the l1-norm of vector ðDx

ðnÞ
1 ;

Dx
ðnÞ
2 ; . . . ;Dx

ðnÞ
N Þ, jjDx

ðnÞ
i jj1 ¼ maxi2N ðDx

ðnÞ
1 ;Dx

ðnÞ
2 ; . . . ;Dx

ðnÞ
N Þ.

According to (33), jjDx
ðnÞ
i jj1 � maxi2N

P
j6¼i

gij
bi
jDx

ðn�1Þ
j j �

ðmaxi2N
P

j 6¼i
gij
bi
ÞjjDx

ðn�1Þ
i jj1. Since maxi2N

P
j6¼i

gij
bi

< 1,

jjDx
ðnÞ
i jj1 � jjDx

ðn�1Þ
i jj1. It implies that Algorithm 1

results in a contraction mapping of jjDx
ðn�1Þ
i jj1 and thus

converges to the Nash equilibrium. tu

Proof of Lemma. According to (13) and Algorithm 1

x�i ¼
ai � p

bi
þ
X

j6¼i

gij
bi

x�j ; i; j 2 S: (34)

The matrix format of (34) is

LS �GSð Þx�S ¼ aS � p1Sð Þ: (35)

Because LS is a positive diagonal matrix, it is invertible.
Denote any eigenvalue and the corresponding eigenvec-
tor of L�1S GS as � and m, respectively. Mathematically,
L
�1
S GS

� �
m ¼ �m. Assume mi is the largest element in

absolute value, mij j � mj

�� ��; 8j 6¼ i

�mij j ¼
X

j2N

L
�1
S GS

� 	
ij
mj

������

������

�
X

j2N

L
�1
S GS

� 	
ij

���
��� mj

�� �� � mij j
X

j2N

gij
�� ��
bi

< mij j:

(36)

From (36), the absolute values of all eigenvalues of
L
�1
S GS are less than 1. Since the eigenvalue values

of the matrix I� L
�1
S GS are equaled to 1� �, the matrix

I� L
�1
S GS does not have 0 eigenvalues. Thus, LS� GS ¼

LS I� L
�1
S G

� �
is invertible and xS

� ¼ LS �GSð Þ�1

aS � p1Sð Þ. tu

Proof of Proposition 1. Based on Lemma, RUs’ strategies
at the Nash equilibrium is a continuous function of the
matrix GS . Thus, we can find a matrix G0S , in which
g0ij � gij; g

0
ij 2 G0S; gij 2 GS and at least one strictly inequa-

lity exists, such that RUs with positive strategies x�
0

S at the
Nash equilibrium under G0S are also in the set S. Accord-
ing to (35)

LS �GSð Þx�S ¼ aS � p1Sð Þ (37)
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LS �G0S
� �

x�
0

S ¼ aS � p1Sð Þ: (38)

Subtract (37) from (38),

x�
0

S � x�S ¼ LS �GSð Þ�1DGSx
�0

S ; (39)

where DGS ¼ G0S �GS . Thus, the total difference between
x�
0

S and x�S is

1TS x�
0

S � x�S

� �
¼ 1TS LS �GSð Þ�1DGSx

�0

S : (40)

Since x�S ¼ LS �GSð Þ�1ða� pÞ1S in (14), it follows that

1TS LS �GSð Þ�1¼ LS �GSð Þ�11S
� �T

¼
1

a� p
x�TS : (41)

Substitute (41) into (40), we get the total difference as

1TS x�
0

S � x�S

� �
¼

1

a� p
x�TS DGSx

�0

S : (42)

Because a > p, x�
0

S ; x
�
S  0 and DGS � 0, the total differ-

ence between x�
0

S and x�S , 1TS ðx
�0

S � x�SÞ > 0, which
implies that the total requested content levels at the
Nash equilibrium increase when gij increases. The
Proposition 1 verifies that the social effect between
RUs with similar social attributes makes RUs get more
interested contents. tu

Proof of Proposition 3. For any unit payment p 2 ½0;
maxi2N ai	, the requested content levels of the set of RUs S
with positive strategies are given in (14). Meanwhile,
according to (13), RU i’s the requested content level x�i ¼
ai�p
bi
þ
P

j6¼i
gij
bi
x�j is continuous in p and RU j’s requested

content level x�j , j 6¼ i. When the unit payment p increases
a small amount to p0, the set of RUs with positive strate-
gies at the Nash equilibrium does not change and their
strategies are still given by (14) except that p is replaced
by p0. Hence, the set of RUs with positive strategies is the
same at any unit payment in a continuous unit payment
interval. However, when the unit payment p increases
a large amount to p00, some RUs’ strategies decrease to 0
and thus they would not request any contents as shown
in the two-RU example. Therefore, the interval of the unit
payment is piecewise.

Assuming RU i has a maximized strategy x�i > 0when

p � maxi2N . According to (13), x�i ¼
ai�p
bi
þ
P

j6¼i
gij
bi
x�j �P

j 6¼i
gij
bi
x�j �

P
j6¼i

gij
bi
x�i < x�i , which is a contradiction.

Therefore, x�i ¼ 0; 8iwhen p � maxi2N ai. tu
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